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Combined molecular/continuum modeling reveals
the role of friction during fast unfolding of
coiled-coil proteins†

Alejandro Torres-Sánchez, a Juan M. Vanegas, b Prashant K. Purohit c and
Marino Arroyo ad

Coiled-coils are filamentous proteins that form the basic building block of important force-bearing

cellular elements, such as intermediate filaments and myosin motors. In addition to their biological

importance, coiled-coil proteins are increasingly used in new biomaterials including fibers, nanotubes, or

hydrogels. Coiled-coils undergo a structural transition from an a-helical coil to an unfolded state upon

extension, which allows them to sustain large strains and is critical for their biological function. By

performing equilibrium and out-of-equilibrium all-atom molecular dynamics (MD) simulations of coiled-

coils in explicit solvent, we show that two-state models based on Kramers’ or Bell’s theories fail to

predict the rate of unfolding at high pulling rates. We further show that an atomistically informed

continuum rod model accounting for phase transformations and for the hydrodynamic interactions with

the solvent can reconcile two-state models with our MD results. Our results show that frictional forces,

usually neglected in theories of fibrous protein unfolding, reduce the thermodynamic force acting on

the interface, and thus control the dynamics of unfolding at different pulling rates. Our results may help

interpret MD simulations at high pulling rates, and could be pertinent to cytoskeletal networks or

protein-based artificial materials subjected to shocks or blasts.

1 Introduction

The coiled-coil motif is a prevalent molecular structure that
occurs in approximately 10% of all proteins.1,2 It is composed
of 2 to 5 a-helices that wrap around each other to form a super-
helix, where hydrophobic amino acids of neighboring chains form
a ‘zippered’ structure in the core of the filament and charged
residues on the periphery form stabilizing salt bridges,3–6 see
Fig. 1. The most salient mechanical feature of coiled-coils is their
ability to sustain large strains along their fibril axis. At strains above
B10%, coiled-coils undergo a structural transition in which the
a-helices unfold and the coiled-coil structure unwinds.7–9 This
property allows coiled-coils to extend without breaking, and is
fundamental for their biological function in various cellular
structures.

Coiled-coils are the building block of intermediate filaments,10,11

one of the three major components of the cell cytoskeleton along
with microfilaments and microtubules.12 Intermediate filaments are
composed of lateral arrangements of tens of coiled-coils, and create
three-dimensional networks that reinforce the cytoplasm.13 Due to
their larger extensibility as compared to microfilaments and micro-
tubules, intermediate filament networks provide a strain buffering
element under large deformations (up to 300%) when they are
directly loaded under tension.11,14–20 In these situations, the unfold-
ing of the coiled-coil structure under large stretching may play a
major role in the overall cell response.21 Outside cells, intermediate
filaments are found in hair, hoof and wool.22–24 Coiled-coils also
play a key role in motor proteins, such as in myosin II,5,8,25 where
unfolding of the coiled-coil structure is required for optimal
mechanical performance.26 In bioengineering, de novo coiled-
coils are used as building blocks for the development of new
biomaterials, such as fibers,27 nanotubes,28,29 and hydrogels30,31

to name a few, with potential applications to drug delivery,
regenerative medicine and biosensing.4,32

The unfolding of coiled-coils and other proteins studied by
force spectroscopy experiments8,21,33 and steered molecular
dynamics (MD) simulations34–36 has been rationalized with
two-state (folded vs. unfolded) models based on Kramers37

or Bell–Evans theories.38,39 However, two-state models fail to
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recapitulate the dynamics of unfolding at different pulling
regimes.34,35,40,41 Deviations between the two-state analysis of
non-equilibrium MD simulations and experiments have been
attributed to a change in the unfolding mechanism at different
pulling rates.34,35 This problem is further obscured by the usual
disparity in pulling rates in experiments (mm s�1), and MD
simulations (m s�1), only bridged in a few works using high-
speed force spectroscopy.42 Here, we show that a simple one-
dimensional continuum model of phase-transforming rods,
parametrized using all-atom MD simulations, captures the
rate-dependent force response naturally, thus extending classi-
cal two-state models. A key feature of this framework is the
ability to resolve the spatial distribution of forces along the
protein. Our results identify a mechanism by which frictional
forces with the solvent reduce the driving force on the coiled–
unfolded interface at high pulling rates, thus reducing the
speed of propagation of the interface.

The regime studied here, in which hydrodynamic inter-
actions affect the force distribution within the fibrous proteins,
may be pertinent in various situations. Significant hydro-
dynamic interactions require very high strain-rates or forces,
which in cells can occur during shocks or blasts.43 Furthermore,
the crowded cytosol provides a much more frictional environment
than the dilute aqueous solution considered in our MD simulations,
and thus lower strain-rates may be sufficient to create significant
hydrodynamic forces along the protein. An unfolding coiled-coil
protein may also experience a highly frictional environment when
bundled in an intermediate filament as it slides relative to adjacent
proteins,21 or when a helical strand unfolds while shearing relative to
an adjacent one within a coiled-coil protein.44–46 The regime studied
here may also be pertinent to artificial bio-inspired materials
based on coiled-coils under fast loading rate conditions. Finally,
it may provide the background to interpret out-of-equilibrium
MD simulations.

The paper is organized as follows. In Section 2, we describe
the phenomenology of coiled-coil unfolding under force through
all-atom MD simulations. In Section 3, we present a simple two-
state model for the unfolding of coiled-coils parametrized using
MD free-energy calculations and show that it can only reproduce
the dependence of the rate of unfolding on the applied force for
low pulling rates. In Section 4, we introduce a one-dimensional
continuum mechanics model of phase transforming rods that
extends the previous model to deal with higher pulling rates. In
Section 5, we show numerical simulations of this model and
compare them with our MD simulations. We conclude with a
summary and discussion of the results.

2 Phenomenology of the
unfolding process

To understand the unfolding mechanics of coiled-coils, we
perform a series of pulling experiments from MD simulations
on a de novo coiled-coil based on the amino acid sequence
E(IEALKAE)17IEA, which is temperature- and chemically-stable.47

We choose this synthetic coiled-coil because it has a homogeneous

structure, in contrast to naturally occurring coiled-coil proteins
such as myosin or vimentin, which are inhomogeneous, less
stable, and naturally contain weaker regions where the coiled-
coil transition nucleates first, such as stutters. Synthetic coiled-
coils are aimed at producing more stable and controllable
structures for bioengineering purposes.4,27,32 Further details
on the molecular composition of this coiled-coil molecule as
well as the simulation settings are discussed in Appendix A.
Following previous works,34–36,48 we pull from both ends of the
protein at a fixed rate. Since the unfolding of coiled-coils is
fundamentally driven by the rupture of H-bonds in the
a-helices, see Fig. 1, we monitor the lengths of the NH H-bonds
forming the a-helices. More precisely, we monitor their projection

onto the fibril axis rix
� �NH

i¼1 defined by ri
x = ri�x̂, where ri is the bond

vector of the ith H-bond and the fibril axis is aligned with the x
direction. To get a continuous measure, we then calculate rx(X,t),
the field of H-bond distances at time t as a function of the
coordinate X, which parametrizes the fibril axis of the coiled-coil
in the folded state. Thus, X can be viewed as a Lagrangian
coordinate for the system in a fixed reference configuration, the
initial folded state at thermodynamic equilibrium and zero force.

We obtain rx(X,t) from rix
� �NH

i¼1 by interpolation along the fibril axis

using the positions of the H-bonds in the reference configuration.
In Fig. 2A–E we show the behavior of the protein and rx(X,t)

during a pulling experiment at a constant rate of vp = 1.5 m s�1.
The chain progressively unfolds, with the coordinated rupture
of H-bonds in both a-helices and from both sides of the
protein. At low pulling rates, the N terminus (right) of the
protein tends to unfold first and this interface initially propa-
gates faster than the interface at the C terminus (left), which is
likely due to different inherent stabilities of the helices at the
two termini. At higher strain rates, we observe other nucleation
events occurring randomly along the protein, but the unfolding
process is fundamentally driven by the propagation of the
primary interfaces at both ends (see ESI,† Supplementary
movie). We also note that a steady propagation of the interfaces
without refolding events was observed in all pulling experi-
ments tested.

Irrespective of the pulling rate, we observe three different
regimes in the force–strain relation during pulling. We define
the strain as e = l � 1 where the stretch l = l/L is the quotient
between the deformed and undeformed lengths (Fig. 2F). At low
strains (I) there is a linear dependence between force and
strain. During this regime, H-bonds are stretched without
rupture. At strains above this maximum value, we observe a
crossover above which the force–strain relation exhibits a
plateau. This regime (II) with a nearly constant force spans
strains up to 120% and corresponds to the progressive unfolding of
the coiled-coil protein. For small pulling velocities (vp = 1.5 m s�1,
blue) the force plateau is nearly constant with a small slope,
Fa = (0.76e + 358) pN. However, at high pulling velocities
(vp = 9.5 m s�1, red) this regime exhibits a significant slope,
Fa = (3.02e + 450) pN, indicative of large dissipation and a highly
non-equilibrium process. Finally, when the protein is completely
unfolded, we observe again a steep increase in force with the strain,
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as the covalent bonds in the polymer are stretched (III). Similar
force–strain relations are found for naturally occurring coiled-coils,
such as myosin,7,8,49 vimentin,13,34 or fibrinogen,48 suggesting
that the unfolding of coiled-coils obeys a general principle,
regardless of their inner composition.36 The different regimes
can be systematically identified from rx(X,t). Coiled/unfolded
regions can be identified depending on whether rx(X,t) is lower/
higher than a threshold, e.g. 0.6 nm, and regime II can be assigned
to conformations exhibiting coexistence of these two phases.

3 A zipper-like two-state model based
on all-atom MD simulations
3.1 Interface propagation based on Arrhenius law

Zipper-like two-state models based on the pioneering works of
Gibbs,50,51 Kramers37 and Bell38 are widely used to understand
the unfolding dynamics of proteins in general,52,53 and coiled-
coils in particular.8,21,33–35 In its simplest version, this model
assumes that unfolding occurs in a zipper-like manner with
propagating interfaces driven by the consecutive breaking of
H-bonds in the protein, in agreement with the observations
made in the previous section. At a given force F, the rate at
which bonds break is characterized by an Arrhenius law,
measuring the rate of change of the fraction of broken bonds

kþðFÞ ¼ k0 exp �
Gþb ðFÞ
kBT

� �
; (1)

where G+
b(F) is the energy barrier that bonds need to overcome to

break at force F, and k0 measures the number of attempts that

the bond makes to cross the barrier per unit time. The function
G+

b(F) depends on the unfolding mechanism of the phase
transition. Equivalently, the rate at which broken bonds reform
is given by

k�ðFÞ ¼ k0 exp �
G�b ðFÞ
kBT

� �
; (2)

where now G�b (F) is the energy barrier necessary to reform the
bond. Note that since the energy difference between the folded
and unfolded states is DG = G+

b(F) � G�b (F), we have

kþðFÞ
k�ðFÞ ¼ exp �DGðFÞ

kBT

� �
; (3)

in agreement with detailed balance. At the Maxwell force F0,
DG(F0) = 0, both phases coexist at equilibrium, and the interface
does not propagate. The net rate at which unfolding occurs is
given by

kðFÞ ¼ kþðFÞ � k�ðFÞ

¼ k0 exp �G
þ
b ðFÞ
kBT

� �
� exp �G

�
b ðFÞ
kBT

� �� �
:

(4)

In this section, we test the validity of eqn (4) when applied to the
unfolding of coiled-coils probed by all-atom MD simulations.
For this purpose, we first analyze the free energy profile of the
system to obtain G�b (F). Then, we perform a set of pulling
experiments for a wide regime of pulling rates and forces. For
each experiment, we measure k and F and check whether eqn (4)
is satisfied.

Fig. 1 (A) Atomistic structure of a coiled-coil protein. A coiled-coil is formed by two right-handed a-helical polymeric chains that adopt a super-helical left-
handed structure. (B) Representation of an a-helix showing the hydrogen bonds formed between CO and NH groups (left) that stabilize the helical structure, and
ribbon representation (right) showing the polymer backbone of the secondary structure. (C) In our MD simulations, we consider an atomistic description of
the coiled-coil with an explicit solvent (water is shown with transparent colors for visualization purposes). (D) Secondary structure of the coiled-coil. The two
a-helices wrap around each other to reduce the contact of their hydrophobic sites with the surrounding water. (E) During unfolding, the coiled-coil structure
unfolds due to the rupture of the H-bonds forming the a-helices. This can be better appreciated in the secondary structure (F).
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3.2 Free energy profile

To compute the free energy barriers G�b (F) relevant to the
unfolding of coiled-coils, we resort to the free energy landscape
of the protein in terms of a collective variable capturing protein
elongation. We note that doing this involves a significant
conceptual step, since we use an equilibrium free energy surface
to predict the out-of-equilibrium unfolding of the protein. One
can only expect reasonable results close enough to equilibrium
in line with Onsager’s linear response theory.54–56 We thus first
calculate the free energy profile of the protein in terms of
meaningful collective variables (CVs). We already noted that
unfolding is mainly characterized by (1) the breaking of H-bonds
of the a-helices forming the super-coil, and (2) the unwinding
of the coiled-coil. From these two processes, the rupture of
H-bonds dominates the kinetics of unfolding.34 Thus, a collective
variable that characterizes the state of the coiled-coil protein is

the average of the projection of the H-bond distance onto the
fibril axis

rxh i ¼
1

NH

X
i

rðiÞx : (5)

While hrxi characterizes the degree of stretching of the protein, it
cannot determine if the stretching is homogeneous, so that all
H-bonds are uniformly strained, or inhomogeneous as the result
of a mixture of coiled and unfolded phases. To properly sample
the system and build a meaningful free energy landscape, which
should depend not only on the degree of stretching but also on
the heterogeneity of stretching, we follow Samuelson et al.57 and
add the standard deviation of rx as an auxiliary CV

srx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx2h i � rxh i2

q
: (6)

Fig. 2 Phenomenology of unfolding in coiled-coils under force. (A–E) Behavior of rx along the chain for an experiment at constant pulling velocity vp =
1.5 m s�1. After the initial nucleation of small unfolded domains at both ends, the coiled-coil unfolds with two interfaces propagating towards the center.
(F) Force–strain relation in experiments at fixed pulling rates. In blue we show the force–strain relation for a simulation at 1.5 m s�1. We repeat the
procedure for 9.5 m s�1 (red). We see three regimes where the coiled-coil behaves differently. Regime I shows a linear behavior consistent with the
homogeneous stretching of the H-bonds. Regime II presents a plateau typical of the unfolding process, which exhibits a significant slope at high pulling
rates. Finally, in regime III we observe a stiffer response with a sharp increase in force as a function of strain, characteristic of the homogeneous stretching
of the covalent bonds of the a-helix. In darker blue and red we show the fit to a linear relation of the 1.5 and 9.5 m s�1 curves respectively in regime II.
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For srx
E 0 the chain is homogeneously elongated, whereas when

this quantity increases, the system can develop heterogeneities.
To analyze the free energy landscape A(hrxi,srx

), we use well-
tempered metadynamics58 with multiple walkers,59 as implemented
in the PLUMED package.60 In this methodology, the system
is analyzed in parallel with multiple random walkers in the
collective-variable space at temperature f T, which allows the
system to overcome energy barriers that are practically inaccessible
at the original temperature T. The free energy landscape at
temperature f T is then appropriately reweighted to recover the
free energy landscape at the original temperature T. Here, we
employed 200 walkers simultaneously at T = 310 K and f = 20.
We let the walkers sample the collective variable space until the
free energy landscape becomes stationary, which determines
the criterion for convergence.

In Fig. 3I we show the converged free energy landscape
resulting from this analysis. There are two main energy wells
corresponding to the coiled state, hrxico = 0.198, and the unfolded
state, hrxiun = 0.828. The well of the coiled state is narrower and

more stable, and is characterized by a small standard deviation srx
.

In contrast, the unfolded state has a wider well with higher energy
(21 kJ mol�1) and higher srx

, characteristic of its random-polymer
nature. One can define a minimum energy path between these two
minima (A–E). States that deviate from this path are penalized due
to a smaller or higher srx

(F and G), which induce unfavorably
homogeneous or heterogeneous unfolding states. Upon further
stretching, the coiled-coil gets straightened but with a significant
free energy cost (H). Integration of the free energy surface along srx

,

A rxh ið Þ ¼ �kBT log

ð
e�A rxh i;srxð Þ=kBTdsrx ; (7)

results in an effective free energy profile in terms of hrxi only
(Fig. 3II black) at zero force.

The main outcome of this free energy calculation is a profile
that clearly identifies two low-energy states, folded and unfolded,
and quantifies the barrier. We note that the partially folded inter-
mediates sampled by the metadynamics algorithm (Fig. 3B–D,
F and G) are very unlikely conformations required to quantify the

Fig. 3 Analysis of the free energy landscape. (I) Free energy surface in terms of hrxi and srx
. Representative states in the free energy surface (A–H) are

shown to illustrate the behavior of the coiled-coil along the free energy surface. States A–E follow the minimum energy path between the coiled-coil
state (A) and the unfolded state (E). (II) Free energy profile G(hrxi,F) for different forces F in terms of hrxi. In each curve the triangles, squares and circles
indicate the positions of the coiled minimum, the unfolded minimum and the maximum respectively. At zero force (black), we obtain A(hrxi) by integration
of A(hrxi,srx

) along srx
(eqn (7)). At the critical force, F0 = 113 pN (blue), the two coiled and unfolded states have the same energy. At higher forces (green,

red), the unfolded state is energetically favorable.
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height of the barrier in thermodynamic equilibrium, and thus not
representative of the mechanism during the sequential unfolding
observed in our out-of-equilibrium simulations. Ultimately, the free
energy calculation provides a thermodynamic characterization of an
elementary unfolding step.

With the free energy landscape at zero force at hand, we
need to couple F with our measure of extension, hrxi, to account
for the induced tilting of free energy, and hence to compute the
energy barriers as a function of force. First, we note that the
force is equally shared by the two a-helices. Since H-bonds are
tension loaded during unfolding, the force along the fibril axis
on each H-bond is F/2 on average. In other words, the thermo-
dynamic conjugate of hrxi is F/2. Therefore, the driving free
energy during unfolding is

G rxh i;Fð Þ ¼ A rxh ið Þ � 1

2
F rxh i � rxh ico
	 


; (8)

which tilts the free energy by the force application about the
coiled ground state. In Fig. 3II, we plot G(hrxi,F) for different
values of F. We observe that at F0 = 113 pN the coiled and
unfolded states have the same energy. At higher forces, the
unfolded state becomes the most stable equilibrium configu-
ration. We can obtain G�b (F) by direct examination of the energy
barriers of G(hrxi,F). The functions G�b (F) are in general non-
linear functions of F, since the positions of the minima and
maxima change with the force, but this effect is small and they
can be accurately linearized around F0 (see Table 1).

3.3 Comparison with MD simulations

We now examine whether the two-state model based on the
Arrhenius law in eqn (4) and the barriers G�b (F) estimated from
the equilibrium free-energy profile reproduces the unfolding of
coiled-coils in our MD simulations. For that, we first consider a
set of pulling experiments at constant force and evaluate G�b (F)
as discussed in the previous section. To calculate the rate of

unfolding k in the simulation, we establish the relation between
k and h:rxi, where the over-dot denotes time derivative. We first
note that the average H-bond distance, hrxi, can be expressed in
terms of the average H-bond distances of broken hrxiun, and
intact, hrxico, H-bonds

aunhrxiun + acohrxico = hrxi, (9)

where aun and aco are the fractions of broken and intact H-bonds.
The quantities hrxiun and hrxico are approximately constant during
the unfolding process. Taking into account that aco = 1 � aun,
we obtain

_aun(hrxiun � hrxico) = h:rxi, (10)

and thus,

k ¼ _aun ¼
_rxh i

rxh iun� rxh ico
	 
: (11)

It is clear from this expression that k measures the rate of
change of the fraction of broken H-bonds.

We now examine the relation between k and G+
b(F) in MD

simulations. Because we are not interested in the initial elastic
loading of the molecule, we start with a configuration where
unfolded sections near the two ends have already nucleated.
Assuming that the interface velocity obeys the Arrhenius law in
eqn (4), and taking into account that for the range of forces we
are examining G�b (F) c G+

b(F), we have

kðFÞ � k0e
�Gþ

b
ðFÞ=kBT : (12)

Therefore, if the effective kinetic law underlying the unfolding
process in our MD simulations was indeed given by an Arrhenius
law, then log(k(F)) should be linearly related to G+

b(F), with a slope
of b = �1/kBT and a zeroth order term given by log(k0). In Fig. 4A,
we show the data obtained from simulations at different pulling
forces, and the fit to an Arrhenius law with k0 = (3.8� 0.1)� 109 s�1.

Fig. 4 Predictions of the two-state model based on an Arrhenius law for a single propagating interface. (A) Unfolding rate versus Gibbs energy barrier G+
b

(F) for experiments at constant low forces (F o 410 pN) represented in blue. In this regime, unfolding follows an Arrhenius law (dashed line) characterized
by an exponential dependence of the interface velocity in terms of the Gibbs energy barrier, which is in turn a function of the applied force F.
(B) Unfolding rate versus F. The Arrhenius law fails to predict the behavior of the unfolding for higher forces (red). The same kind of behavior is observed in
simulations performed at constant velocities (yellow).
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We note that b is not a fitting parameter and is kept to its nominal
value given by the thermostat (T = 310 K) of our molecular dynamics
simulations. Thus, the simulations agree remarkably well with a
two-state model based on an Arrhenius law and on an estimation of
energy barriers based on the equilibrium free energy for low forces
(170 o F o 410 pN).

We now examine the relation between k and F for higher
pulling forces. In Fig. 4B, we plot k as a function of F according
to the data in our MD simulations for low (blue circles) and high
(red squares) forces. We compare this data with the theoretical
expression in eqn (12) encoding Arrhenius law, where G+

b(F) is
computed from the free-energy profile and k0 is fitted as from
Fig. 4A as described above (dashed curve). As in Fig. 4A, we
observe an excellent agreement between theory and MD data at
low forces (blue circles), whereas at high forces (red squares) the
deviation becomes significant. This distinction between the low-
force and high-force regimes is also apparent at constant pulling
rates (yellow triangles), where the force is calculated as the average
force in the plateau regime. The data that corresponds to the
simulations in Fig. 2 are marked with double triangles for reference.

Thus, our simulations closely follow the predictions of a two-
state model based on an Arrhenius law for low pulling forces and
rates, but they clearly deviate from it at high pulling forces or fast
rates. To explain this discrepancy in highly out-of-equilibrium
situations, we hypothesize that hydrodynamic interactions between
the unfolding molecule and the surrounding solvent may play a
role, since such friction in principle reduces the force that effectively
acts at the interface. Microscopically, fast processes preclude full
relaxation of the protein and the solvent, leading to rate-dependent
entropy production and energy dissipation, which can be lumped
within Onsager’s linear response theory into an effective friction
coefficient as discussed below.55,56 If this hypothesis was true, the
anomalous behavior at high pulling rates would not respond to a
breakdown of Arrhenius law or to a switch in the unfolding
mechanism as previously hypothesized,34,35,40,41 but to a reduction
of the applied force caused by hydrodynamical interactions. In
support of this hypothesis, we note that all-atom simulations using
implicit solvent,36 and thus missing any hydrodynamic effect,
showed a higher plateau at larger pulling rates, but did not exhibit
the increasing slope in region II that we observe in our explicit
solvent simulations at high pulling rates, see Fig. 2. Similarly, a
theoretical model describing the progressive unfolding of a fibrous
protein but ignoring hydrodynamic effects predicted a higher
plateau at high pulling velocities, albeit with zero slope.53

To test this hypothesis, we describe next a theoretical model
accounting for the force distribution along a phase-transforming
rod in the presence of a viscous frictional interaction with the
environment.

4 A continuum model of
phase-transforming rods

To examine the role of viscous friction during fast unfolding
of coiled-coils, we model the protein as a one-dimensional
phase-transforming continuum rod. This framework has been

previously used to rationalize materials exhibiting phase transitions
including rod-like macromolecules such as DNA61,62 or beam-like
nanoscale materials such as multi-walled carbon nanotubes.63 It has
also been applied to the a-helix to b-sheet transition in muscle
protein titin64 or in the whelk egg capsule biopolymer.65,66 Recently,
this approach has been used to understand steered MD simulations
of coiled-coils under a negligible frictional force.36 Let us briefly
discuss the basic ingredients of this continuum model.

We represent by jt(X) the deformation mapping at time t
such that, at t = 0, j0(X) = X. We denote by F(X,t) the force acting
on this material particle and by Fa = F(0) = F(L) the force applied
at the ends. We consider that there are two propagating inter-
faces, one for each end of the protein, between coiled and
unfolded phases, parametrized by their position in the reference
configuration S1(t) and S2(t) respectively. Thus, s1(t) = jt(S1(t))
and s2(t) = jt(S2(t)) are the positions of the interfaces in the
deformed configuration at time t, see Fig. 5. If we model the
system as an overdamped rod in a frictional medium approx-
imating a Newtonian fluid, conservation of linear momentum
for this system along the fibril axis reads

@F

@X
¼ Zv; (13)

where v = qj/qt and Z is the effective drag coefficient for the
coiled-coil protein in the surrounding viscous fluid.67 In principle,
Z could depend on whether the protein is locally coiled or
unfolded, leading to two coefficients Zco and Zun. However, here
we assume that both coefficients are equal. We model the
elasticity of the rods with a force–strain relation given by

FðX ; tÞ ¼
kcoeðX ; tÞ if X � SðtÞ

kun eðX ; tÞ � e0un
� �

if X4SðtÞ
;

(
(14)

where e = qXjt� 1 is the local strain, kco is the elastic constant in
the coiled state, and kun and e0

un are the elastic constant and the
equilibrium strain for the unfolded state, respectively.

Assuming that the rate of unfolding is characterized by an
Arrhenius law, we can write

_Si ¼
L

2
k FðSiÞð Þ; i ¼ 1; 2 (15)

where k(F) is given by the Arrhenius expression eqn (4). Note
from this expression that if the fraction of unfolded bonds aun

becomes 1 in a unit of time, then k = 1 and two interfaces would

Table 1 Parameters for the continuum model

Parameter Value

Z 8 pN ns nm�2

kco 4.4 � 103 pN
kun 5.0 � 103 pN
e0

un 1.15
k0 3.8 � 109 m s�1

F0 113 pN
A 74.96 kJ mol�1

p+
’ �0.4 � 10�1 kJ (mol�1 pN�1)

p+
- �0.8 � 10�1 kJ (mol�1 pN�1)

p�’ 1.5 � 10�1 kJ (mol�1 pN�1)
p�- 1.1 � 10�1 kJ (mol�1 pN�1)
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have traveled at a velocity Si = L/2 as expected. If Zv is small,
such as for small pulling rates, then qF/qX E 0 and therefore F
is approximately constant. In that situation, F(Si) E Fa and we
recover the two-state model.

Interestingly, these equations can be derived following a
variational framework, called Onsager’s formalism,54,56,68 see
Appendix B. This variational principle sheds light into the
dissipative structure of the problem. For instance, one can
identify the net dissipation of the system as

Q ¼
ðL
0

Zv2dX þ 1

�k1
_S1
2 þ 1

�k2
_S2
2; (16)

where

�ki ¼ k0

exp �G
þ
b FðSiÞð Þ
kBT

� �
� exp �G

�
b FðSiÞð Þ
kBT

� �
e0unFðSiÞ � Da

; (17)

FSi
identifies the force at the interfaces, and Da = e0

unF0 measures
the difference in free energy densities between the coiled and
unfolded phases at equilibrium. Eqn (16) clearly identifies the two
different dissipation mechanisms of unfolding, namely friction
with the solvent (the integral term on the left) and propagation of
the interfaces, each playing a dominant role depending on the
pulling rate as discussed in Section 5.2. This differs from
classical two-state models, where only interface propagation
dissipates energy.

To properly describe our continuum model, we need to find
the elastic constants kco, kun of the protein, the equilibrium
strain in the unfolded state e0

un, and the friction coefficient Z. So
far we have characterized the stretching of the coiled-coil
protein through H-bond distances. While H-bond distances
are good descriptors for unfolding of the protein, they do not
properly describe the elastic stretching, which also depends on
the elongation of other structures of the chain. For this reason,
it is not possible to obtain good measures for the elastic
constants of each phase from the free energy profile shown in
Fig. 3II. To calculate the elastic constants of the model, we
consider pulling experiments at constant pulling rate vp for low

pulling rates vp o 2 m s�1 so that the effect of friction is
negligible. In that case, the force–strain curve in the coiled and
unfolded phases looks like a straight line whose slope is
precisely ki with an offset that provides e0

un for the unfolded
regime. We find that kco = 4.4 � 103 pN, kun = 5.0 � 103 pN and
e0

un = 1.15. The friction coefficient is estimated below.

5 Results of the continuum model

In this section, we test the validity of our atomistically-informed
continuum model against MD simulations and examine the
role of friction. Then, we compute the energy dissipated during
unfolding, an important measure to understand the function of
coiled-coils at different pulling regimes. Details of the numerical
simulations of the continuum mechanics model are described in
Appendix C.

5.1 Comparison with MD simulations

We validate here our continuum model by comparing the
force–strain relation under a fixed pulling rate with the
results from MD simulations. Before proceeding, we need to
find the friction coefficient in our model. To show the effect of
the friction coefficient in the force–strain relation, we examine
the dynamics of the continuum model at a pulling rate of
9.5 m s�1 with different friction coefficients and compare them
against a MD simulation, see Fig. 6A. We observe that the
friction coefficient controls the slope of the plateau during the
unfolding process, whereas it has a much smaller effect in
regimes I and III. For a vanishing friction coefficient, the
results of a two-state model with a vanishing slope at the
plateau are recovered. In view of this, the friction coefficient
is estimated by adjusting the slope during regime II. We find
that Z = 8 pN ns nm�2 predicts well the slope of the plateau for
all pulling rates tested, see Fig. 6B.

We now examine the force distribution F(X) at different
stages of the dynamics for continuum simulations with fixed
applied velocity or force. Note that, since our continuum model
does not contain any symmetry-breaking ingredient, both ends

Fig. 5 A one-dimensional continuum model for coiled-coil unfolding based on phase-transforming rods. Initially, the coiled-coil is at equilibrium in the
coiled state, which defines the reference configuration in our continuum mechanics model (left panel). We then a pull at two ends of the coiled-coil at
rate vp. The deformed configuration of the coiled-coil at time t is given by the deformation mapping jt(X), which maps a point X in the reference
configuration onto the deformed configuration. In this deformed configuration, part of the coiled-coil protein has unfolded. To track the phase
transformation, we identify the position of the interfaces between the coiled and the unfolded phases in the reference configuration by the time-
dependent variables S1(t) and S2(t). Their positions in the deformed configuration are given by s1 = jt(S1(t)) and s2 = jt(S2(t)). The rate of change of S1(t) and
S2(t), V1 = dS1/dt and V2 = dS2/dt, follow the Arrhenius law eqn (4).
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of the molecule unfold with the same speed towards the center,
which remains stationary. For fixed pulling rates (Fig. 7A), we
observe that the force decays almost linearly from the ends,
where F(0) = F(L) = Fa, to the interfaces, where F(S1) = F(S2) = Fi.
This linear variation, in the light of eqn (13), suggests that the
unfolded region moves as a rigid (yet growing) body with the
imposed velocity vp. We observe that Fi is approximately constant
throughout the time-evolution for the three pulling experiments.
In contrast, Fa presents a larger time-dependence, particularly at
higher pulling rates. This figure contains the most relevant result
of this paper, namely that friction attenuates the force applied on
the molecule and leads to a smaller force at the interface, where
the Arrhenius law applies. For experiments at constant Fa (see
Fig. 7B), we observe again a linear decay of the force in the
unfolded region. At higher forces (Fa = 800 pN) we observe that
the force in the coiled region is not constant initially (darkest
red curve), which suggests that unfolding started before the
force was transmitted throughout the initially coiled molecule
in a highly non-equilibrium process. Remarkably, the constant
pulling-rate protocol (Fig. 7A) results in a highly constant force
at the interface, even though the force at the ends, Fa, changes
during the unfolding process.

Let us now revisit the validity of Arrhenius law for higher
forces and pulling rates. Given the applied force Fa or the
stretching velocity vp, our continuum simulations allow us to
estimate the force at the interface Fi accounting for friction with
the environment, which should govern the velocity of the
interface, or equivalently k. Thus, we can use this information
to infer Fi from the values of Fa or vp of our MD simulations and
re-plot Fig. 4B in terms of Fi. However, Fi changes during the
unfolding process, particularly in constant Fa simulations. We
note, however, that the change in Fi during unfolding is small
compared to the difference between Fa and Fi. Thus, to a good
approximation we can consider Fi to be constant, and equal to
its average value during unfolding. Fig. 7C tests the Arrhenius
law in our MD simulations accounting for this correction.

Remarkably, we observe an excellent agreement between the
MD data and the Arrhenius law, even for high propagation
speeds, provided that the correct force at the interface is used.
This agreement is also reflected in an accurate prediction by
the continuum model of the relation between the extension rate
of the protein and the force during the plateau, see Fig. 7D.

In summary, our continuum model reproduces well MD
simulations, even for higher forces and pulling rates, where
conventional two-state models fail. We have shown that:
(1) friction plays a critical role at higher pulling forces and rates
by reducing the actual force at the interface driving its motion,
(2) the friction coefficient can be estimated from the slope of
regime II obtained from MD simulations, and (3) friction leads to a
non-trivial force distribution along the protein, which can be
computed using our atomistic-based continuum model. One could
in principle measure F(X) from non-equilibrium MD simulations,
e.g. using microscopic stress calculations.69,70 However these
measures are computationally expensive and require significant
temporal and spatial smoothing. In contrast, our continuum
approach provides a means to infer the force distribution along
the protein from a simple atomistically-informed continuum
calculation.

5.2 Energy dissipation

Coiled-coils have been reported to unfold as truly elastic
materials with negligible energy dissipation,8 but also as strain
buffering elements that dissipate large quantities of energy and
provide a means to absorb energy in shocks.34 As we show next,
our theoretical model reconciles these behaviors because coiled-
coils dissipate energy during unfolding in a rate-dependent fash-
ion, which allows them to act both as elastic materials at low
pulling rates, and as highly dissipative elements at higher pulling
rates. This dual behavior is essential for the biological function
of coiled-coils in different cell structures such as intermediate
filaments or myosin motors.1,7,8,34 While eqn (16) provides a route
to compute the energy dissipated during the unfolding process,

Fig. 6 (A) Comparison between a MD simulation at 9.5 m s�1 and continuum simulations with different friction coefficients, which shows that the slope
of the force–strain relation at the plateau from MD simulations can be used to determine the friction coefficient in the model. (B) Comparison between
the force–strain relation in MD and continuum simulations for two different pulling rates 1.5 m s�1 (blue) and 9.5 m s�1 (red).
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this expression is difficult to exercise in MD simulations, since
one would need to compute the velocity field along the protein.
To estimate the energy dissipated during protein unfolding, we
evaluate the work input to the system due to the applied force
Fa when stretching the coiled-coil from an initial homogeneous
strain e0 to a strain e1,

W e0; e1; vp
	 


¼ L

ðe1
e0

Fa e; vp
	 


de

¼ DA e0; e1ð Þ þQ e0; e1; vp
	 


;

(18)

which can be split into the free energy stored by the coiled-coil,
DA(e0,e1) and heat, Q(vp) which represents the energy dissipated
in the process due to friction. Assuming that after unfolding
the strain is also homogeneous, which holds approximately

true for all simulations, the change in free energy DA(e0,e1) is
independent of vp and can be calculated from

DA e0; e1ð Þ ¼ L

ðe1
e0

FeqðeÞde; (19)

where Feq(e) is the force on the coiled-coil at equilibrium for a
given strain e. As discussed earlier, the equilibrium force
exhibits three regimes

FeqðeÞ ¼

kcoe if e � êco

F0 if êco o eo êun

kunðe� e0unÞ if e � êun

8>>><
>>>:

; (20)

where

êco = F0/kco êun = e0
un + F0/kun. (21)

Fig. 7 (A) Force distribution F(X) for two continuum simulations at constant pulling rates vp = 1.5 m s�1 (blue) and vp = 9.5 m s�1 (red) at three different
stages of the unfolding dynamics (darker to lighter colors). The applied force Fa and the force at the interface Fi are marked with squares and circles
respectively. (B) Force distribution for two continuum simulations at constant applied force Fa = 500 pN (blue) and Fa = 800 pN (red) at three different
stages of the unfolding dynamics (darker to lighter colors). (C) Arrhenius law in terms of the actual force at the interface Fi accounting for friction with the
environment and comparison with the MD simulations in Fig. 4B, where now we observe an excellent agreement even at higher pulling forces and rates.
(D) Extension rate of the protein as a function of the force at the ends during the unfolding regime (II) for all the MD simulations at constant strain-rate
and force, and predicted relation by the continuum model.
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Thus, we can compute the energy dissipated in the process as

Q(e0,e1;vp) = W(e0,e1;vp) � DA(e0,e1). (22)

Fixing e0 = 0 and e1 = 130%, we evaluate Q(e0,e1;vp) both for MD
(yellow triangles) and continuum simulations (black dots) as
shown in Fig. 8. The observed agreement between the MD and
continuum models is remarkable. We note that changing e0

and e1 such that e0 o êco and e1 4 ê0
un affects only marginally

Q(e0,e1;vp), which suggests that most of the dissipation occurs
during unfolding (data not shown). For that reason, we simply
write Q(vp) to denote Q(e0,e1;vp). Interestingly, we observe two
different regimes for Q(vp), which are characterized by power
laws in terms of vp and present a crossover at vp* = 0.087 m s�1

Q vp
	 


¼

vp

v1

� �m

if vp � vp
	

vp

v2

� �n

if vp 4 vp
	

;

8>>>><
>>>>:

(23)

where m = 1.06, n = 0.39, v1 = 1.14 � 104 m s�1 and v2 = 8.62 �
10�10 m s�1. For a pulling rate of vp*, the average applied force
in the plateau is Fa* E 150 pN. The change of behavior in Q(vp)
is a result of the change of the dominant dissipative mechanism
of the unfolding process. At low pulling rates, vp o vp*, friction
is negligible and energy is predominantly dissipated at the
interface, reflecting the dissipative nature of the Arrhenius
kinetics. At higher pulling rates, vp 4 vp*, the energy dissipated
due to friction between the molecule and its environment
becomes dominant. Our results suggest that in our longest
simulations at the smallest pulling rates, the two sources of
dissipation compete with friction being larger.

6 Summary and discussion

Coiled-coils, present in major force-bearing cellular structures
and in engineered biomaterials, exhibit an unfolding mechanism
that allows them to sustain large strains and is critical for their
biological function. Two-state models based on the Arrhenius law
are popular to understand the unfolding mechanics of proteins
in general, and of coiled-coils in particular. However, two-state
models are unable to reproduce the mechanics of unfolding at
high pulling rates, leading to the speculation that a different
unfolding mechanism could become operative during highly
out-of-equilibrium pulling regimes. Our combined all-atom
MD/continuum theoretical study puts forth an alternative
scenario, according to which the two-states picture and Arrhenius
law are still valid at the interface, but the force at the interface
driving the transition between the coiled and the unfolded states
is significantly modified at high strain-rates by the friction
between the protein and its environment. The pulling rates
employed here (m s�1) are still far from those that can be
achieved by high-speed force spectroscopy (mm s�1).42 Never-
theless, this high strain rate regime may be relevant in different
scenarios, such as when cells or artificial materials are subjected
to impact or blasts.

Our atomistically-informed continuum model of a phase-
transforming rod describes the unfolding process across different
regimes with a unique mechanism. It shows that friction attenuates
the force exerted at the end of the protein along the fibril axis, an
effect that increases with the pulling force. The model accurately
predicts force–strain curves from MD simulations, corrects the
Arrhenius law in terms of the applied force, and allows us to
compute the energy dissipated during unfolding. We observe that
coiled-coils dissipate small quantities of energy for small pulling
rates, in agreement with previous works suggesting that they behave
as truly elastic structures, but dissipate high amounts of energy for
higher pulling rates, where they may act as shock absorbers. At high
pulling rates, dissipation is dominated by friction, whereas at low
pulling rates, it is dominated by the motion of the phase boundaries
between the coiled and the unfolded phases. By identifying the
previously unnoticed role of friction between the protein and its
environment, our work may help rationalize out-of-equilibrium MD
simulations and single molecule force spectroscopy experiments at
high pulling rates, not only of coiled-coils but also of other fibrous
proteins including single a-helical proteins.

Appendix A: molecular dynamics
simulations

To understand the unfolding of coiled-coils under force, we
performed molecular dynamics (MD) simulations of an artificial
double-stranded coiled-coil made of two parallel a-helices, each
with the amino acid sequence E(IEALKAE)17IEA. Such an amino
acid sequence has been shown experimentally to form coiled-
coils that are very temperature and chemically stable even for
short protein lengths.4,47 The positions of the protein backbone
atoms were obtained from the crystal structure of the myosin

Fig. 8 Energy dissipated as a function of the pulling rate vp in a log–log
plot. Yellow triangles represent the MD pulling experiments in Fig. 4 while
black dots are obtained from our continuum mechanics model. We
observe an excellent agreement between both. The continuum mechanics
model allows exploration of very low pulling rates, which are well beyond
the accessible timescales from MD simulations. The energy dissipated can
be described by two power laws (linear relations in the log–log plot), that
present a crossover at vp E 0.1 m s�1 (see the main text).
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coiled-coil25 with the amino acid sidechains replaced using the
UCSF Chimera package.71 The resulting coiled-coil (E18 nm
long) was solvated with SPC water molecules72 within a simulation
box that could accommodate the completely unfolded protein
(E45 nm long).

All MD simulations were performed with the GROMACS
package version 4.5.5.73 The coiled-coil protein is modeled
with the GROMOS-54A7 force field.74 The temperature was held
constant at 310 K with a Nose–Hoover thermostat and the
simulation box was held constant. Sodium and chloride ions
were also added to neutralize the protein charge as well as provide
physiological salt conditions. Following previous works,34–36,48 we
pull from both ends of the protein at a fixed rate or with constant
force. Harmonic restraints were used to keep the coiled-coils
long axis aligned with the long dimension of the simulation box
throughout all simulations.

Appendix B: Onsager’s formalism
applied to phase-transforming rods

The governing equations of the phase transforming rod introduced
in Section 4 can be derived from a variational principle, called
Onsager’s variational principle. This general framework for the
modeling of dissipative systems can be applied to low Reynolds
hydrodynamics, visco-elasticity, or chemical reactions among
others.54,56,68 Let us first introduce this principle for a simple 1D
elastic rod embedded in a viscous fluid. A key ingredient in
Onsager’s principle is the free energy, which for an elastic rod of
reference length L takes the simple form

A½jt
 ¼
ðL
0

f ðeÞdX; (24)

where e = qXjt(X)� 1 is the strain,jt(X) is the deformation mapping,
f is the elastic energy density and [�] indicates a functional depen-
dence. Another essential ingredient in Onsager’s principle is the
dissipation potential, which for viscous friction takes the form

D @tjt½ 
 ¼
ðL
0

Z
2
@tjtð Þ2dX ; (25)

where Z is the friction coefficient. We note that, while A depends
functionally on jt, D depends on its time derivative qtjt. This
reflects that the free energy only depends on the state of the
system, regardless of how the system reached that state. On the
other hand, dissipation depends on how the system is changing
its state. If a force Fa is applied between the ends of the protein,
a power is added to the system

P[qtjt] = Fa[qtjt]
X=L
X=0. (26)

Onsager’s principle then states that the dynamics of the system
are given by

@tjt ¼ arg min
V

R½jt;V 
; (27)

where R is the Rayleighian,

R[jt,qtjt] =
:
A[jt,qtjt] + D[jt,qtjt] + P[jt,qtjt], (28)

and
:
A is the time-derivative of the free energy,

_A½jt; @tjt
 ¼
ðL
0

f 0ðeÞ@X@tjtdX

¼ �
ðL
0

@Xf
0ðeÞ@tjtdX þ f 0ðeÞ@tjt½ 
X¼LX¼0 ;

(29)

where we have integrated by parts. Defining the stress F(e) =
f 0(e), the equations resulting from the minimization are

qXF(e) = Zqtjt, for 0 o X o L (30)

Fa = F(e), for X = 0 or X = L. (31)

We now look at the variational formulation of a phase-
transforming rod deforming in a viscous fluid. We consider
that f (e) is characterized by two quadratic functions in either of
the phases and that the system presents two interfaces, char-
acterized by positions S1 and S2. In this case, the free energy is

A jt;S1;S2½ 
 ¼
ðS1
0

kun e� e0un
	 
2þDah i

dX þ
ðS2
S1

kcoe2dX

þ
ðL
S2

kun e� e0un
	 
2þDah i

dX :

(32)

where apart from jt, A also depends on the positions of the
interfaces S1 and S2 to characterize the system. Here Da = F0e

0
un

identifies the difference in free energy density between the
unfolded and coiled states at equilibrium. Dissipation now
takes the form

D jt;S1;S2; @tjt; _S1; _S2

� �
¼
ðS1
0

Zun
2
v2dX þ

ðS2
S1

Zco
2
v2dX

þ
ðL
S2

Zun
2
v2dX þ 1

2�k1
_S1
2 þ 1

2�k2
_S2
2;

(33)

where �k2 and �k1 characterize the dissipation generated by the
propagation of the interfaces; these are non-linear functions of
the deformation, as will become clear later. Again, we consider
the power input

P[qtjt] = Fa[qtjt]
X=L
X=0. (34)

Towards applying Onsager’s principle, we compute the rate of
change of the free energy

_A ¼ �
ðS1
0

k@X
2jt@tjtdX þ k @Xjt � 1� e0un

	 

@tjt

� �X¼S1
X¼0

�
ðS2
S1

k@X
2jt@tjtdX þ @Xjt � 1ð Þ@tjt½ 
X¼S2X¼S1

�
ðL
S2

k@X
2jt@tjtdX þ k @Xjt � 1� e0un

	 

@tjt

� �X¼L
X¼S2

þ kco @Xjt � 1ð Þ2�kun @Xjt � 1� e0un
	 
2�Dah i

_S2

� kco @Xjt � 1ð Þ2�kun @Xjt � 1� e0un
	 
2�Dah i

_S1

(35)
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Again, Onsager’s principle states that the dynamics minimizes
the Rayleighian

R jt;S1;S2; @tjt; _S1; _S2

� �
¼ _A jt;S1;S2; @tjt; _S1; _S2

� �
þ P @tjt½ 


þD jt;S1;S2; @tjt; _S1; _S2

� �
:

(36)

Mathematically,

@tjt; _S1; _S2

� �
¼ arg min

V ;T1 ;T2

R jt;S1;S2;V;T1;T2½ 
: (37)

The resulting equations are

qXF(X,t) = Zqtjt, (38)

with

FðX ; tÞ ¼
kco @Xjt � 1ð Þ if S1 oXoS2

kun @Xjt � 1� e0un
	 


otherwise

(
(39)

As before, the applied force is

Fa = kunqXjt, for X = 0 or X = L. (40)

and the force at the interfaces

FSi
= kco(qXjt � 1) = kun(qXjt � 1 � e0

un), at X = Si.
(41)

The movement of the interfaces is given by
:
Si = (�1)i�k(Da � e0

unFSi
). (42)

To match this expression with Arrhenius law

_Si ¼ ð�1Þi�1k0 exp �G
þ
b FSið Þ
kBT

� �
� exp �G

�
b FSið Þ
kBT

� �� �
; (43)

we identify

�ki ¼ k0

exp �G
þ
b FSið Þ
kBT

� �
� exp �G

�
b FSið Þ
kBT

� �
e0unFSi � Da
	 
 : (44)

Note that since both numerator and denominator change sign
at the Maxwell force FSi

= F0, �ki is always positive, leading to
a positive dissipation in agreement with the second law of
thermodynamics.

Appendix C: numerical integration of
the continuum model

To simulate our one-dimensional continuum model, we dis-
cretize the reference domain in space using a finite difference
setting with an evenly distributed set of N nodes {X1,X2,. . .,XN}
with inter-node distance D = L/(N � 1). We denote by
{x1,x2,. . .,xN} their positions in the deformed configuration.
Then, eqn (13) can be discretized as

dxi

dt
¼ Fiþ1

2 � Fi�1
2

D � Z ; (45)

where

Fiþ1
2 ¼

kco
xiþ1 � xi

D
� 1

� �
; if Xi 4S1 and Xiþ1 oS2;

kun
xiþ1 � xi

D
� 1� e0un

� �
; if Xiþ1 oS1 or Xi 4S2:

8>>>><
>>>>:

(46)

Note, however, that these equations do not include the movement
of the interfaces S1 and S2 or the nodes next to them. To represent
propagating phase boundaries we follow the approach by Raj and
Purohit61,75 and follow them with two additional nodes, of position
S1 and S2, that move along the reference configuration. Across
these moving nodes, e can be discontinuous. Let us assume that, at
time t, S2 lies between nodes u and u + 1. In this case, the segment

XuS2, with reference length Dco = S2� Xu, is in the coiled state and

the segment XuS2, with reference length Dun = Xu+1 � S2, is in the
unfolded state. Dco and Dun are related through

D = Dco + Dun. (47)

Let us denote by Fco the stress at the interface in the coiled
phase and by Fun the stress at the interface in the unfolded
phase. Balance of linear momentum at the interface requires
that the stress is continuous Fco � Fun = 0, i.e.

Fco � Fun = kcoeco � kun(eun � e0
un) = 0, (48)

where eco and eun are the strains of the segments XuS2 and

S2Xuþ1 at time t respectively. Furthermore, from the continuity
of jt(X) we have

(eco + 1)Dco + (eun + 1)Dun = xu+1 � xu. (49)

Assuming the position of S2 at time t is given, eqn (48) and (49)
can be solved for eco and eun. The force at the interface at time t
is then given by FS2

= kcoeco = kun(eun � e0
un), which determines

the interface velocity from eqn (4), i.e.

_S2 ¼ �
k0L

2
e�G

þ
b

FS2ð Þ=kBT � e�G
�
b

FS2ð Þ=kBT
 �

: (50)

To compute the time-evolution of the nodes next to the inter-
face, we discretize eqn (13) as

dxu

dt
¼ FS2 � Fu�1

2

Z D=2þ Dcoð Þ; (51)

dxuþ1

dt
¼ Fuþ3

2 � FS2

Z D=2þ Dunð Þ: (52)

Following an identical procedure, one finds
:
S1 and the ODEs

dictating the evolution of the nodes next to it. Eqn (45), (50)–(52),
along with the corresponding equations for the first interface,
form a coupled set of ordinary differential equations, which we
solve using the LSODA solver part of the ODEPACK library as
implemented in the Scipy package.76

The previous equations depend on the functions G+
b(F) and

G�b (F). These functions do not seem to obey a simple law for the
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whole range of forces, but they can be linearized above and
below the transition separately, obtaining

Gþb ðFÞ ¼
Aþ pþ F � F0ð Þ if F 4F0;

Aþ pþ! F � F0ð Þ if F � F0;

(
(53)

and

G�b ðFÞ ¼
Aþ p� F � F0ð Þ if F 4F0;

Aþ p�! F � F0ð Þ if F � F0;

(
(54)

where the parameters A and p�2 are listed in Table 1.
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